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ABSTRACT

Powell, M.S. 1991. The effect of liner design on the motion of the outer grinding elements in a rotary
mill. Int. J. Miner. Process., 31: 163-193.

A theoretical analysis was made of the motion of an isolated rod or ball, and the way in which it is
influenced by a lifter bar of any face angle and of any height. The charge motion of rods in a glass-
ended mill was filmed with a high-speed camera. The mill was fitted with a variety of lifter bars with
different face angles and heights, and was run at a wide range of speeds. The trajectories of the rods
on film were then tracked. The coefficients of friction between the rods and the lifter bar materials
were measured under the vibrating conditions that are found in the mill.

It was found that there was a good correlation between the theoretical predictions and experimental
results over a wide range of conditions. The impact point at which the grinding element strikes the
shell of the mill was considered to be of primary importance in the analysss. [t was found that as the
height of the lifter bar increases from zero to slightly greater than one charge radius, the height has a
strong influence on charge trajectories. Thereafter, the lift increases until a critical lifter-bar height is
reached. At heights beyond this, the grinding element is projected off the lifter bar prior to reaching
the tip, with the height of the impact point increasing slightly and then decreasing to a constant height.
The change in the height of the impact point is very small, however, so, in practical terms, an increase
in lifter-bar height — once it is higher than the radius of the grinding element — has only a slight effect
upon the charge trajectories.

An increase in the angle of the lifter bars was found to have a strong influence upon the height of
the charge trajectories. A linear relationship was discovered between the speed of the mill and the
angle of impact, and changes in the mill speed strongly influence the charge trajectories.

Some surprising effects of lifter-bar geometry upon the charge trajectories have been discovered,
and are of practical importance. The theoretical model is an improvement on all previous models,
and agrees well with experimental results over a wide range of conditions.

INTRODUCTION

Rotary mills are used extensively in the size reduction of the coarse rocks
of ores that are mined to a product fine enough to facilitate the extraction of
the valuable minerals. The South African gold mines alone grind about 110
million tons of ore annually, at a power cost of about 140 million Rand and a
liner material cost of about 40 million Rand (Powell, 1987).
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NOMENCLATURE

General variables

a ball radius.

o angular acceleration of ball.

a sine (R—h)—a= a constant.

I frictional force between face of lifter bar and ball.
F resultant force on the ball.

g gravitational acceleration (9.8 ms~?).

h radial height of lifter bar.

1 moment of inertia.

m mass of ball.

N normal force exerted by lifter bar on ball.

R internal radius of mill.

r distance from centre of mill to centre of ball.

¥ vector directed from centre of mill to centre of ball.
o R—a.

8 recosf.

3 vector parallel to face of lifter bar, directed from tip to base.
§ linear velocity of ball along face of lifter bar.

§ linear acceleration of ball along face of lifter bar.

t time,

T sliding time.

r torque.

Iy static coefficient of friction between the ball and the lifter bar.

Iy kinetic coefficient of friction between the ball and the lifter bar.

v net velocity of the ball, in cartesian coordinate system

Q2 angular velocity of the mill.

X horizontal cartesian coordinate of the centre of the ball.

v vertical cartesian coordinate of the centre of the ball. -

1 perpendicular. >
Il parallel.

Angles

« between lifter bar face and a radial line that passes through the tip of the lifter bar.
f between radius vector to ball, and face of the lifter bar.

y subtended by § and x axis.

o subtended by 7 and x axis.

P between the face of the lifter bar and its base.

a to horizontal of the velocity vector of the ball.

fl subtended at centre, between the tip of the lifter bar and x axis.

A subtended at contact point of ball on lifter bar, between centre of ball and base of lifter bar.
K friction angle, equivalent to arctan .

Subscripts

0 point of equilibrium.

L tip of lifter bar.

¢m  about centre of mass of ball.

m maximum,

1 point of transition from rolling to sliding.

p point of contact between ball and the face of the lifter bar.

X in direction of x.

v in direction of y.

E point at which ball strikes the shell of the mill.

II parallel to.

T radial component.

il perpendicular to.
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Because the charge motion in mills has a determining influence on the
grinding action, it has been studied, both theoretically and experimentally,
since the beginning of the century. The influence of lifter bars upon charge
motion has been considered only in the past few decades, and mostly to a very
limited extent, as was revealed in an extensive survey of existing literature
(Powell, 1988). This has left the field wide open to further research.

In this paper, a mathematical model of the motion of an isolated grinding
element in a rotary mill is developed, which is then compared with experi-
mental observations of the motion in a model mill. The specific aspect that is
examined is the influence of the liner profile upon the motion of the outer
layer of charge.

Studies by other investigators

In 1983 Mclvor published a paper that examined the effect of liner config-
uration upon charge motion (Mclvor, 1983). In this work, it was noted that
the outer layer of the charge consumes a significant portion of the total input
of power to the mill, and is also responsible for transfer of energy to the bulk
of the charge. It was also concluded that the outer layer of charge has a signif-
icant effect on the motion of the bulk of the charge.

A theoretical analysis was made of the motion of a’particle resting on a flat
bar that projects out at an angle to the shell of the mill. It was assumed that at
the moment that the particle reaches a state of equilibrium, i.e., the gravita-
tional, centrifugal and frictional forces balance out, it is projected into free
flight. It was concluded from these computations that the trajectories of the
particles are highly sensitive to the leading face angle of the lifter bar. Al-
though it was not revealed in the calculations, it was observed that the height
of the lifter bar affects the trajectories.

In 1985, Vermeulen published a paper which analysed the lifting action of
lifter bars (Vermeulen, 1985). In this work, some previously unappreciated
factors were brought to light. Vermeulen recognised that the width of the bar
affects the angle of its leading face and, most importantly, that the particle is
not projected into flight from the base of the bar. From the equations of force,
it is apparent that the particle remains in contact with the lifter bar, and rolls
or slides down the face until it reaches the tip of the bar, at which point it is
projected into flight. This revealed the way in which the height of the lifter
bar affects the degree of lift of the particles.

Vermeulen's work gave a sound foundation upon which a theoretical model
of charge motion could be developed, and the analysis given here is based
upon the techniques that he used.
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THEORY

A theoretical study follows of the effect that lifter bars of varying face angle
and height have upon the outer layer of charge within a rotary mill. The sim-
plest case of an isolated ball keyed-in to the motion of the mill is considered.

A ball resting on a lifter bar, and against the shell of a rotating mill, reaches
a point of equilibrium where the sum of the forces acting on it is zero. Here,
the net forces on the ball, parallel to (||) and radially perpendicular to ( L)
the motion of the ball, are zero. The ball will then start to roll or slip down the
face of the lifter bar (Vermeulen, 1985).

Point of equilibrium

With reference to Figs. | and 2, the forces acting on the ball are as follows:

(a) gravitational force, acting vertically downwards (mg),

(b) centrifugal force directed radially outwards towards the mill shell
(m&°r),

(¢) normal force of the lifter bar (N), and
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Fig. 1. Ball on a lifter bar in a rotary mill.
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Fig. 2. Forces on a ball in contact with a lifter bar.

(d) frictional force between the ball and lifter bar, which is parallel to the
face, and directed towards the mill shell (f).

For this analysis, the forces are resolved into components that are parallel
and perpendicular to the leading face of the lifter bar, and in the plane of
rotation of the mill.

All symbols that are used, are listed in Nomenclature and are also shown in
Figs. 1 and 2. At the point of equilibrium we have forces that are || to the face
of the lifter bar:

me2°r, -cosfo+ u,N—mg-siny, =0 (1)
and forces that are L to the face of the lifter bar:
N —mg-cosy, —m7ry-sinf, =0 (2)

Substituting for N into eq. 1, and dividing by m, gives:

. (0% )
SNy, — s COSYy =;?’o(005)80 + pus-sinfy) (3)

Substituting tank for u,, where x=friction angle, and multiplying by cosk
yields:
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-

SNy, * COSK — COSY, *SINK = ?rn(cosﬁu -cosk+sinf, - sink)
. &
sin(yo—kK) = g To7e0s (Bo—K)

Yo =K+arcsin(%2rg -cos (o —-'C)) (4)

For 5, which is the unit vector parallel to the face of the lifter bar and which
is directed outwards, we can see from Fig. 1 that, at the point of equilibrium:

So="ry 'COSﬁ(. ( 5 )

Bo =arcsin(é) (6)
ro
where d= (R—h)-sina—a=constant.

By use of eqgs. 4, 5 and 6 the location of the ball at the point of equilibrium
can be determined fully.

For a lifter bar that is lower in height than the radius of a ball, the angle 4 is
greater than 90°. This introduces additional terms into egs. 1 and 2, which
involves both sin and cos functions of N. The solution for the point of equilib-
rium is given by:

}J(,=K—/‘,+arccos(—%m-sin().+ﬁ0—x)) (7)

The ball is already at the tip of the bar, and is therefore projected directly into
flight from the point of equilibrium.

When the ball is at the tip of the lifter bar, the distance s, and the angle f;.
are given by the condition that sy = LO’ (Fig. 1). Therefore, from 4 OLO':

sy = (R—h)-cosa (8)

BL= arctan(é) (9)
S

Between the point of equilibrium and the tip of the lifter bar the ball rolls
and slides down the face of the bar. It is not projected into free flight from the
point of equilibrium because while N is finite, the ball must interact with the
lifter bar. It can happen that the face of the lifter bar is almost vertical, i.e.
y~90°, while the ball is still in contact with the bar. In this case, the ball will
fall away from the lifter bar once the normal force N is zero, i.e.:

m*r-sinf+mg-cosy=0
g-cosy+2*6=0 (10)
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All calculations must be checked continuously for this condition, as the fol-
lowing derivations apply where N is positive and the ball remains in contact
with the face of the lifter bar until it reaches the tip of the bar.

If the static coefficient of friction is greater than zero, the ball will initially
undergo pure rolling due to the torque applied by f/ (Fig. 2), where:

f<uN
Ball rolling down the face of the lifter bar
If the forces that act on sphere as it rolls down a slope that is subjected to a

constant angular velocity are considered, the following equations can be de-
rived. using Fig. 3:

normal to incline : N—mg-cosy—m82?5=0 (11)
in plane of incline: mQ*s —mg-siny+ f=mJ (12)
torque about centre of mass (cm): ', =1 @ (13)

where y=y,+ Q.

The only force that acts at a distance from the centre of mass is £, so:
fra=I0
For a sphere:

Lo =3 ma-

This moment of inertia about the centre of mass is the only factor that differ-
entiates between the motion of a ball and a rod when rolling down a plane.

For a rod, I..,=4ma?’, which is the only factor that needs to be changed in
order for the calculations to be applied to rods.

F| = — (mQ% + mg-cosy)

Fig. 3. Forces on a sphere rolling down a slope of changing incline, y(f).
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While the ball doesn’t slip, the angular acceleration is directly related to the
linear acceleration by:

= —— (14)
a

where § is negative for a positive «, as a result of the orientation of the axes.
Hence:

2ms§

S=— 5 (15)
The substitution of this into eq. 12 yields:
Bl <
_EQ $=—7 g-sin) (16)

The solution of this linear, non-homogenous second-order differential
equation, which is consistent with the boundary conditions of s(0) =s,, which
is known, and §,_,=0 (as the ball has not yet started rolling) is:

5
s(f}:(sn — smyo) -cosh f-.Qt
\/ 12Q° 7 (17)
35¢ . 5
T COSY, sinh \/ .QH—IZQ2 siny
) 5
s—\/ .Q( 120 sm,JU) sinh \ﬂ-ﬁr
(18)
28 h 2o
120\ CO8Y0 cOS 7§21 —cosy

These equations describe the position and velocity of the ball for pure rolling
down the face of a lifter bar.

Maximum angle for pure rolling

There is a limit on the force (f) given by uN, so, for a given static coeffi-
cient of friction () and mill parameters, there is a maximum angle (7,,) up
to which pure rolling will occur. Beyond this angle, the linear acceleration is
too high for eq. 14 to hold, and the surface of the sphere must begin to slip
across the face of the lifter bar. The theoretical maximum angle for pure roll-
ing can be calculated from the equations that express the forces on the rolling
sphere, and that give its acceleration. The substitution of eq. 16 into eq. 12
yields:
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2 ; ”
f=%(g-sm?—9'3) (19)
f<uN, so fromegs. 11 and 19:
. 7 (7 .
AL N B il |3
siny,, 2 s COSYm < 5 (2 ays+s) (20)

However, s=s(1), so this can only be solved numerically. The solution of eq.
20 when s=s, yields y,,(min), which is the minimum possible value of y,, at
the limit. Equation 17 can then also be numerically solved for s=s,. How-
ever, if 91 >y, (min), then there must be a transition from pure rolling to
rolling and sliding.

Transition from pure rolling to combined rolling and sliding

The simultaneous solving of the eqs. 20 and 17 for y,, and s(¢) yields the
limit for pure rolling. The resulting equation:

7 & . < 21
13 Si0Ym =75 Hs*COSYm < (21)

72 0 A2 5 5 53 _ 5
gt 4+ —=0+—— el Rk, e . i
- i, (g Q 2 smy(,)cosh % Q 17 €087 imh 5 Qn

can be solved by increasing ¢ until the inequality is satisfied for 7=1,, where ,
is the time at which the transition from rolling to sliding takes place. By use
of egs. 17 and 18, the location and velocity of the ball can be calculated at this
transition point.

Combined rolling and sliding

Once the ball begins to slide, its motion is retarded by the force arising from
the kinetic coefficient of friction. A combination of rolling and sliding yields
a linear motion that is equivalent to pure sliding under friction. As there is a
torque about the centre of mass, there must still be an angular acceleration of
the ball about its centre of mass, but under sliding conditions this is not de-
pendent upon the linear motion. Some of the gravitational energy that would
otherwise be lost due to friction, in the case of a flat-bottomed block, is in-
stead converted to rotational motion of the ball about its centre. From eq. 13
it is derived that:

f-a:%maz-a’
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Now:
f=w.*N= i (mg-cosy+m?d)

50
a=§}1(g-cosy+925} (22)
2a

which yields the angular acceleration of the ball once it starts sliding.
Sliding

When pure sliding down the face of the lifter bar is considered, and (with
reference to Fig. 2) the forces are resolved parallel and perpendicular to the
face of the lifter bar, we have the following:
| to the face of the lifter bar:

mQ2r-cosp+ w N—mg-siny=m-§ (23)
1 to the face of the lifter bar:
N—mg-cosy—m&*r-sinf=0 . (24)

The linear acceleration is found by the substitution for N into eq. 23 and
the expression of this in terms of s and &:

§—s=g(u cosy—siny) + 2’ 1,0 (25)

From the transition point, it is easiest to start with a new time, which can
be designated by 7. The boundary conditions at =0 are given as:

5(0)=s; and 5._o =5,

The solution of this differential equation that is consistent with these bound-
ary conditions is:

s(1) =[s, + ‘uk5+% (U - cosy; —siny, ):|cosh Q1

§ . .
+[é—%(#k +siny; +cosy, )}smh Q (26)

*%[#k-cos(]}[ + Q1) —sin(y+Q21) ] — o
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§= Ql}' + 1 0+ % (. ~cOSy; —sind, )]sinh Q1
+[é, —%(;zk -siny; +cosy, )}cosh Q1 (27)

-%[ — iy sin(y; + Q1) —cos(y +21) ]

Equation 26 is solved numerically for s(7) =s,, and yields 7, which in turn
yields the velocity and position, y, for the ball at the tip of the lifter bar. The
7 that is used starts at zero at the transition point between rolling and sliding,
so that the total time moving along the lifter bar is t;, =4 +1.

Free-flight trajectory

At the tip of the lifter bar the ball is immediately projected into free flight,
as there is no further significant interaction with the tip of the bar as a result
of the radial velocity of the ball, and the curve of its surface. Figure 4 illus-
trates clearly the reason why the ball escapes (Vermeulen, pers. commun.,
1989). As the ball is a rigid object, all its parts travel with the same velocity
as the centre of the ball, which causes a difference in velocity between the
point of the ball that is in contact with the tip of the lifter bar and the tip
itself. It can be seen that even if the ball does not have a radial velocity, i.e.,
for a lifter bar with a height that is the same as or less than a ball radius, there
is a velocity difference between the ball and the tip of the lifter, and this has
a radial component which allows the ball to escape from the lifter bar without

SN

Fig. 4. Resolution of the velocities for a ball resting on the tip of a lifter bar.
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Parabolic trajectory

x\}

Fig. 5. Parabolic trajectory of the ball at its point of departure from the lifter bar.

interaction at the tip. If the lifter bar is worn or rounded at the tip, then the
point at which the rounding begins is effectively the tip. The curvature of the
surface of the lifter bar results in a decreasing face angle, and the lower the
face angle of the lifter bar, the less the lift of the ball. Therefore, as soon as the
ball, moving along the lifter bar, encounters a lower face angle, it must fall
free of the bar. For a lifter bar that curves from the base, the ball must be
projected into free flight from the point of equilibrium, and will not move
along the bar at all.

The free-flight trajectory is illustrated in Fig. 5. At the tip of the lifter bar,
the following is known: s, , 5, 0,, S, .. The radial coordinates of the ball are:

SL .
(er¢L)=(£;ﬁ_L‘yl._ﬁL) (28)

So that the free-flight trajectory can be determined, it is convenient to change
the frame of reference to Cartesian coordinates, with the origin at the centre
of the mill:

(xe,y) = (ro-cosgy , ry_-sing; ) (29)

§1s the velocity of the ball along the face of the lifter bar, to which the veloc-
ity due to the rotation of the mill must be added. This velocity component is
tangential, and equals Qr, :

(Vs vy ) = (S -cosy, — Qry -singy ; §; -siny, +Qry -cosey ) (30)
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The net velocity is:

vy =/vl +0h (31)

the angle of projection is:

o= arctan(f'-'-l'-ll) (32)
Uxr

to the horizontal.
Once in free flight the ball follows a parabolic path, which is given by:

X=x_+v ! (33)
y=yL+o,t—igt? (34)

The point at which the ball strikes the shell of the mill, assuming that no
interaction with the charge mass occurs en route, is satisfied by the condition:

Xg+yE=rd (35)
The velocity components are given by:

(Vg3 Vye) = (Vars Uy —81) (36)
so the velocity of impact with the mill shell is:

ve =V + 02 . (37)
at an angle o to the horizontal: i

Op = arctan(ij:‘i) (38)

The full path of the ball in flight, and its conditions of impact with the shell,
have thus been derived.

This completes the theoretical analysis of the motion of an isolated ball in
a rotary mill with flat-faced lifter bars of any face angle and of any height.

EXPERIMENTAL
Filming of the charge motion

A glass-ended drum, 387 mm in diameter and 300 mm in length, which was
driven by an asynchronous electric motor connected to a variable speed gear-
box, formed the experimental mill. The mill was fitted with 16 removable
lifter bars, and five sets of rectangular section (90°) bars, 6.3, 12, 14.4, 20
and 25 mm in height were used. There were also four sets of lifter bars having
face angles of 75, 60, 45 and 30 degrees. The mill was loaded with rods of,12
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mm in diameter. The mill was run at seven different speeds; from 60 to 100%
of the critical speed. Rods were used so that the end effects of the glass could
be minimized, because the end plates provide an added lifting action to the
grinding media, thus distorting the observed results when a ball charge is used.
In addition, the balls migrate away from the end window, making it difficult
to trace a particular one over an extended period.

It should be noted that the equations for a rod were used in the comparisons
of the experimental and theoretical results.

A variable-speed 16-mm camera was used in the filming of the charge mo-
tion, and a speed of around 300 frames per second was used. A wooden infor-
mation board was mounted in front of, and surrounding the mill. Horizontal
and vertical lines were centred about the centre axis of the mill, which acted
as a reference marker for the analysis of the films. It was ensured that the
camera was aligned both centrally and perpendicularly relative to the face of
the mill, so that the problems of parallax and distortion could be avoided. A
constant-speed asynchronous motor, running at 200 r min~', had a pointer
mounted on its shaft, and in front of a dial face, to form a high-speed clock
that was visible on the films.

Analysis of the films

The primary aim of the film analysis was to plot the trajectories of individ-
ual rods in a way that would allow the predictions of the theoretical model to
be compared with these trajectories, and so that a visual record of the charge
motion could be formed. The film analysis was carried out by the projection
of the film, frame by frame, onto a graphics tablet. The positions of the rods
were then recorded directly from the tablet by use of a mouse, which was
linked to a computer.

A circle, which filled the full area of the graphics tablet, was drawn as a
template upon which the image of the mill could be projected and located.
The horizontal and vertical lines that were located about the centre point were
marked on the edge of the circle. This allowed the image to be accurately
located by the similar lines on the information board. In general, the tip of a
lifter bar, and the four rods in front of it, were followed. The speeds of the
mill and the camera were checked for each run, by use of the clock mounted
next to the mill.

Lifter-bar vibration

The mill vibrated extensively while it rotated, and it was realised that this
would have a large effect on the coefficient of friction between the lifter bar
and the rod resting on it. It was therefore decided to measure the principal
frequency at which a lifter bar vibrated. An accelerometer was screwed di-
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Fig. 6. Layout of the accelerometer.

rectly into a lifter bar, as is illustrated in Fig. 6. A cable was taken from this
through a bolt hole in the flange, and was then connected to a charge amplifier
which was linked to a storage oscilloscope.

The mill was run with a standard 40% charge, and a signal was triggered on
the oscilloscope in the storage mode. Data was accumulated over a number
of revolutions of the mill. The principal frequency of vibration was sought
across the frequency spectrum, and the period was then measured directly off
the screen, and checked for reproducibility.

Measurement of the coefficients of friction

-

It was decided that a simple experiment should be carried out in which a
sample slides down an inclined plane. A steel sheet (1 m in length) was ma-
chined in the same manner as the lifter bars, and was mounted onto a vari-
able-angle rack. A rod was cut into four pieces which were then welded to-
gether to form a square that could act as the sliding sample. The sliding surfaces
thus formed the same contacting pair of materials as is present in the rod/
lifter-bar interface. The apparatus was placed onto thick foam sheets, and a
vibrator was screwed onto the end of the rack. A standard video camera was
used to film the motion of the sliding sample, and a video recorder with a
special frame-by-frame advancing facility was used to analyse the film.

So that the static coefficient of friction could be measured, the sliding piece
was placed on the surface, and the surface was gradually lifted until the angle
at which the sample began to slip was reached. This was repeated a few times
so that the angle could be accurately checked. The sliding piece was placed
with the rod sections perpendicular to the direction of motion, as occurs un-
der real conditions in the mill.

The kinetic coefficient of friction was determined from the sliding time of
the sample — from the moment of release at the top to a fixed point near the
base — and the slope was tilted to an angle that allowed the sample to slide
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freely. Static and kinetic coefficients of friction were measured at the follow-
ing frequencies: stationary, 10, 100, 300, 600 and 1000 Hz. Two amplitudes
of vibration were tested for each frequency, and it was found that 1000 Hz
was the limit of response of this heavy rig to the vibrator.

RESULTS
Films of charge motion

The different sizes and shapes of the lifter bars yielded clearly discernible
differences in the motion of the charge, both in the outer layers and in the
bulk of the charge. Figure 7 gives a plot of the paths of two different rods in

Conditions
6 mm lifter bars of 90°
Mill running at 80 per cent of the critical speed

4 Exp. A

120 4

R0 4+

40 ¢+

mm
=

— 403

80

120

160 ¢+

—200 + + . + + 4
~200 —160 —120 — 80 —40 0 40 80 120 160 200

mm

Fig. 7. Comparative plots of rod trajectories during a single run.
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the same run, which illustrates the expected reproducibility of the rod
trajectories.

With the runs in which perpendicular lifter bars were used, it was noticed
that the rods were projected separately off the lifter bar. In particular, the rod
that was against the bar was free of the others before it started to move down
the lifter bar. However, with sloping-faced lifter bars, the rods slid off in
groups; the one that was against the bar was pushed off first. This clustered
projection made it difficult to locate isolated rods that were being projected
off the sloping-faced lifter bars. Figure 8 illustrates some of the plots that show

Conditions
79 per cent critical speed
25mm, 45°
25mm, 60°
200 20mm, 90° lifter bars
[ Degrees
A 45
160 4 o 60
120 +
80 ¢4
40 +
E 4
£ 0
—40 ¢
— 80 4
~120 ¢4
=~ 1604
- 200 + + + r + + + 1 + v
-200 - 160 —120 —80 ~40 0 40 80 120 160 200
mm

Fig. 8. Influence of face angle of lifter bar upon charge trajectories.
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the large influence that the lifter-bar face angle has upon the trajectories of
the rods.

Lifter-bar vibration

When the mill was run continuously for about a minute, a major 70-us pe-
riod peak was obtained that had an amplitude of about 10 times that of the
subsidiary peaks. This indicates that the lifter bar has a principal frequency
of vibration of 14.3 kHz.

The coefficients of friction

A list of the variations in the apparent static coefficient of friction under a
range of vibrating conditions is given in Table 1. It was somewhat difficult to
judge the exact angle at which the sample began to slide. However, the ob-
served variation was not great, and was estimated to be within 1°, yielding an
uncertainty of +0.015 in the coefficient of friction. Although the results only
extend up to | kHz, it is clear that the apparent static coefficient of friction is
tending to zero, and will be approximately zero when the sample rests upon
the surface of a lifter bar that is vibrating with a frequency of 14 kHz.

The kinetic coefficient of friction is calculated according to the following
equation:

mny—>2 2 -
SRR 201E] (39)
cosy
where d is the length of the sliding surface, y is the angle and 7 the sliding time.
The results of the measurements of the apparent kinetic coefficient of fric-

TABLE 1

Apparent static coefficient of friction

Frequency Relative Angle, y s
(Hz) amplitude*’ (42

0 13 0,23
10 1 13 0,23
100 1 13:5 0,24
2 7 0,12
300 1 10 0,18
2 4 0,07
600 | 7 0,12
2 5,5 0,10
1000 2 5 0,09
4 <3 0,05

*'The relative amplitude is the amplitude setting on the vibrator.
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TABLE 2

Apparent kinetic coefficient of friction

Frequency Amplitude Number of frames Time Iy
(Hz) (s)
1 2 3 4 5 6 Avg
0 0 62 58 64 66 68 64 64 1,28 0,22
10 | 59 58 59 60 58 59 1,18 0,20
100 1 59 59 61 58 61 56 59 1,18 0,20
2 57 57 59 59 58 1,16 0,20
300 1 58 55 58 56 59 57 1,14 0,19
2 57 57 56 59 56 57 1,14 0,19
600 1 59 56 54 57 58 56 57 1,14 0,19
2 56 58 56 57 56 57 57 1,14 0,19
1000 2 55 57 59 59 53 54 56 1,12 0,19
4 58 56 56 54 54 56 1,12 0,19
1.30
1.28 4
1.26 x Low amplitude
1.24 4 ® Higher amplitude
1.224
1204
< 1184
E 116 -
= .14 -
3 112
2 10
1.08 -
10— ——— ——— e —
1.04 4 |
1.02 4 I
1.00 : : . > i
0 10 100 1000 10 000
14 000

Frequency (Hz)

Fig. 9. Measurements of apparent kinetic coefficient of friction; sliding time for different fre-
quencies of vibration.

tion are given in Table 2. If, in increasing the frequency of vibration to 14
kHz, the sliding time, (7) decreases by 0.06 s (which, from an inspection of
Fig. 9, appears likely ), then the error in 7 is 5.4%. As g, is a function of 7%, the
error in y, is about 11%. Therefore, it is estimated that x4 has a high proba-
bility of being in the range 0.19 to 0.17. It is possible that the sliding time
could decrease even further if the simple extrapolation of the curve that is
fitted to the times is incorrect, in which case y could be somewhat lower.

As u, and p, are central to the theory, it is important that the influence of
the uncertainty in these quantities on the theoretically predicted rod trajec-
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Fig. 10. Influence of varying u, upon the rod trajectory.

tories be illustrated. Figure 10 shows the influence that the variation of the
apparent static coefficient of friction from 0 to 0.05 has on the trajectories.
The change in the trajectory of rods with lifter bars of 90° is negligible. When
lifter bars of 60° are used in the mill, the change in trajectory is slightly greater,
but within the experimental uncertainties. The experimental evidence which
indicates that the apparent static coefficient of friction is approximately zero,
is sufficiently strong, and the variation in trajectories with g is sufficiently
small, for any error arising out of the uncertainty in the apparent static coef-
ficient of friction to be considered negligible in this analysis.

Figure 11 illustrates the effect that the reduction of the kinetic coefficient
of friction has upon the rod trajectories that result. When lifter bars of 90°
are used, the influence upon the trajectories in reducing y, from 0.19 to 0.17
is almost indiscernible. Even a reduction to 0.10 has only a small effect. How-
ever, when lifter bars of 60° are used, the change in rod trajectories is signif-
icant, even with a 0.02 reduction in . The reduction of , to 0.10 has a large
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Fig. 11. Influence of reducing g, upon the rod trajectories.

influence upon the predicted rod trajectories. Uncertainties in the coeffi-
cients of friction will have little effect upon the predicted trajectories for per-
pendicular lifter bars, but could introduce a significant error in the predicted
trajectories for sloping-faced lifter bars.

DISCUSSION

Figure 12 illustrates particular points in the trajectories of the rods, as these
shall be repeatedly referred to during the course of this discussion.

Comparison of the theory with experimental results
A computer programme was written which enabled the rapid calculation of

rod trajectories under varying conditions. The equations that were derived
for ball motion were converted where necessary, so that the different moment
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Fig. 12. The lift and impact points of a rod.

of inertia of the rods could be allowed for. The following factors varied in the
experiments: face angle of the lifter bar, height of the lifter bar and speed of
the mill. There are no adjustable variables, and all variables are either exper-
imentally determined, or fixed by given experimental conditions. The theory
can therefore not be adjusted to fit the results. It was considered that the best
method of comparison was to plot predicted and experimentally determined
rod trajectories together, which was carried out for a wide range of condi-
tions, by use of the experimentally determined coefficients of friction of =0,
and 1, =0.19.

Figure 13 gives trajectories for a range of mill speeds and, on the whole, the
correlation is excellent. The plot at a critical speed of 60.6% can be considered
to be within the experimental uncertainties. Figure 14 gives a comparative
plot of the range of trajectories that result from an increase in the height of
the lifter bars. The theory predicts the same surprising result as the experi-
mental work, namely that the higher lifter bars do not project the rods as high
as the lower lifter bars. It was found that the 6-mm lifter bars had not been
properly machined, which resulted in a rounded leading edge and an incorrect
height. The exact height is crucial for lifter bars which are close to the radius
of a rod in height, so small variations yield significant errors, which result in
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Fig. 13. Comparison of theoretical and experimental trajectories over a wide range of speeds.

a significant discrepancy between the derived and measured trajectories for
the 6-mm lifter bars.

Analysis of the theory

Now that it has been established that the theory provides a good prediction
of the influence of lifter bars and mill speed upon the rod trajectories, the
theory can be analysed to provide a deeper insight into the effects that were
observed.

A plot of the mill speed versus the impact angle yields a surprising result
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Fig. 14. Comparison of theoretical and experimental trajectories for a range of lifter-bar heights.

which, as given in Fig. 15, shows that there are two linear regions. A linear
regression carried out on the principle region, from 60 to 84% of the critical
speed, yields a coefficient of correlation of 0.9999, and is therefore linear.
There is a distinct inflection of the line at a value of 85% of the critical speed,
which is followed by a second minor linear region. This inflection occurs be-
cause, under these particular conditions, at above 85% of the critical speed,
the rod is projected off the lifter bar prior to reaching the tip of the bar. As a
result, a new set of controlling conditions apply. The second linear region has
a steeper gradient than the major region. This occurs because the factors, which
are discussed in the following section, that lower the trajectory of the rod no
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Fig. 15. The relationship between the speed of the mill and the angle of impact.
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Fig. 16. The relationship between the height of the lifter bar and the angles of departure and
impact.

longer apply, as the rod is not rolling any further along the lifter bar with the
increasing mill speed, as is the case at below 85% of the critical speed.

Once the height of a lifter bar is greater than the radius of the rod, it exerts
only a small effect upon the trajectory of the rods, as shown in Fig. 16. There
is a peak in the projected angle of impact for a lifter bar height that is about
equal to a rod diameter, after which the angle of impact drops off slightly. The
underlying cause of this drop-off in the height of the trajectory is the radial
acceleration of the rod. As the rod slides along the face of the lifter bar, the
radial velocity increases relative to the tangential component of the velocity.
In addition, the face of the lifter bar becomes progressively more vertical as
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it lifts the rod higher, and the rod is projected off at a more horizontal angle.
Thus, although the net velocity at the moment of projection off the lifter bar
increases with an increase in the height of the lifter bar, the initial velocity
vector of the free-flight trajectory is progressively directed further down-
wards. The direction factor gradually dominates the velocity factor, and leads
to a shallower trajectory.

For most lifter-bar heights the angle of departure increases steadily with an
increase in the height of the lifter bar, which is to be expected. However, above
a critical lifter-bar height, which is dependent upon the speed of the mill and
the face angle of the lifter bar, the rods follow identical trajectories which are
independent of the height of the lifter bar. This occurs because the rod is pro-
Jected off the face of the lifter bar prior to reaching the tip, as is shown in Fig.
16, by the constant angle of departure above a lifter bar height of 17 mm. This
condition arises when the face of the lifter bar is close to perpendicular, and
so the gravitational acceleration acting on the rod is directed away from the
face of the lifter bar, thus causing the rod to accelerate away from the face.
The escape of the rod from the face of the lifter bar is facilitated by the fact
that, in moving towards the tip of the lifter bar, the tangential velocity of the
face decreases as a result of its decreasing radius of rotation. As the tangential
component of the rod’s velocity increases due to the gravitational accelera-
tion, the rod moves free of the lifter-bar face. The horizontal region on the
impact-angle curve corresponds with this region of constant trajectories. The
influence of the height of the lifter bar on the angle of impact is dependent
upon the speed of the mill. At 60% of the critical speed, the angle of impact
gradually increases and then levels out, without passing through a maximum.
This is corroborated by the experimental results.

Figure 17 illustrates the large effect that the changing of the face angle of

120 —
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60—

40—

Impact angle (degree)

20+

0 T T T 1
30 45 60 75 90

Lifter bar face angle (degree)

Fig. 17. The relationship between the face angle of the lifter bar and the angle of impact.
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the lifter bar has upon the outermost rod trajectories. In this case of a high-
speed mill, which runs at 90% of the critical speed, a perpendicular lifter bar
projects the outer layer of charge high up onto the opposing face of the mill.
The angle of the lifter bars can be tuned to project this outer layer onto the
toe of the charge. In this instance, a lifter bar of 55° would be ideal. By use of
this technique, lifter bars can be used to key in the bulk of the charge, without
the projection of the outer layers onto the shell of the mill.

SCOPE AND VALIDITY OF THE WORK

A theoretical model, which is based on the fundamental laws of motion,
was developed to describe the motion of an isolated rod or ball in a rotary
mill, as affected by the geometry of the mill lining. This model takes into
account both the static and the kinetic coefficient of friction that act between
the grinding element and the lifter bar, and allowance is made for the rolling
and slipping of the element. The model examines flat-faced lifter bars of any
face angle and of any height. Only the outermost layer of charge is considered.
However, this is an important indicator of the charge motion since it yields
the outermost limits of the bulk charge motion.

In general, the correlation between the theoretical model and the experi-
mental results is good, and indicates that the model gives the correct predic-
tions of charge motion. However, the predictions are limited by the uncer-
tainty in the measurement of the kinetic coefficient of friction, which arises
from limitations in the experimental apparatus. This limitation has been
shown to cast some uncertainty upon the predicted lifting action of the angled
lifter bars. It appears, from a rough comparison with experimental data (the
data not being suitable for a proper comparison), that the theory predicts
higher trajectories than those found for angled lifter bars, which indicates that
the actual value of the kinetic coefficient of friction is lower than the value of
0.19 that was used.

The theoretically predicted trajectories give good predictions of the outer
charge motion, and all the predicted trends are correct. However, the limita-
tions arising from the incertainty in the measurement of the kinetic coeffi-
cient of friction should be borne in mind.

Previous work examined the effect that lifter bars have upon the charge
motion only to the point up to which the charge is lifted. However, both the
full trajectory, and especially the impact point of the charge, are of great im-
portance. In milling, it is desirable to key-in the charge to the rotary motion
of the mill, but in so doing the charge should not be projected onto the shell
of the mill. If the grinding element impacts directly onto the lining, then ac-
celerated wear of the lining and rapid degradation of the grinding media take
place, without achieving any milling of the ore. It is therefore important that
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the grinding elements are projected onto the toe of the charge; taking this into
consideration, the impact point is emphasised in this work.

Because the theoretical model is based on the fundamental laws of motion,
it can be applied to a mill of any size. All trajectories and angles of departure
and impact are independent of the size, and can be directly scaled-up. How-
ever, it must be borne in mind that the pressures in the charge and the forces
of impact increase with an increase in the size of the mill. So, for identical
charge motions, different grinding characteristics apply for mills of different
sizes.

So that more accurate predictions of the charge motion in a production mill
can be given, measurements need to be made of the static and kinetic coeffi-
cients of friction for balls, rods, or rocks resting upon a lifter bar covered with
slurry. In a pebble mill, the rocks rapidly round off to smooth oval shapes (as
is easily observed by looking at the charge in such a mill), and can therefore
be approximated by spheres. Therefore, the theoretical model can be directly
applied in the prediction of the motion of the charge in a production mill.

Angle of impact (degrees)
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Fig. 18. The combined influence of the face angle of the lifter bar and the speed of the mill upon
the angle of impact.
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CONCLUSIONS

It was shown experimentally that when a smooth lining is used, extensive
slip of the charge takes place. This results in the wasting of energy, accelerated
liner wear, and inefficient charge motion. There is a tremendous increase in
the height of the charge trajectories as the height of the lifter bars is increased
from zero to slightly greater than the radius of a grinding element. To prevent
the slipping of the charge on the liner, the lifter bar should be at least as high
as the radius of a grinding element.

An increase in the height of the lifter bar beyond that of the radius of a
grinding element, results in a slight increase in the height of the impact angle,
which is then followed by a decrease. This effect has not been noted before,
and is of considerable practical importance as it shows that a higher lifter bar
is not going to project the charge to a point that is higher up the side of the
mill. Therefore, the height of the lifter bars can be confidently increased in
mills, without an increased risk of the balls impacting directly onto the shell
of the mill.

An increase in the face angle of a lifter bar from a shallow angle up to an

Angle of impact (degrees)

Fig. 19. The combined influence of the height of the lifter bar and the speed of the mill upon the
angle of impact.
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Angle of impact (degrees)

Fig. 20. The combined influence of the height of the lifter bar and the face angle upon the angle
of impact.

angle of 90° (a rectangular profile ), results in a greatly increased lift and im-
pact angle of the grinding elements. By use of this effect, the face angle can be
designed to allow the lifter bar to drop the charge onto any desired point. This
is especially important in high-speed mills, such as are found on the South
African gold mines, as lifter bars can be installed to key-in the charge without
the projection of the charge onto the shell of the mill. A curved or round-
tipped lifter bar yields an outer charge motion that is equivalent to that of a
flat-faced lifter bar with a height that corresponds to the point at which the
curvature starts. This height is equivalent to the minimum critical height, if
the bar curves from its base.

There is a linear relationship between the speed of the mill and the angle of
impact. The speed of the mill has a substantial effect on the height of the
trajectories, and also on the motion of the bulk of the charge.

A comparison of the relative effects of the above-mentioned variables can
be gained from the three-dimensional plots given in Figs. 18-20. The mill
diameter is 387mm, and the range of each variable is given in accordance with
the way in which that variable may be reasonably changed in a production
mill.
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